Thu, 13 Oct 2022
14:00 - 15:00
Jerome Droniou
Monash University

Hilbert complexes are chains of spaces linked by operators, with properties that are crucial to establishing the well-posedness of certain systems of partial differential equations. Designing stable numerical schemes for such systems, without resorting to nonphysical stabilisation processes, requires reproducing the complex properties at the discrete level. Finite-element complexes have been extensively developed since the late 2000's, in particular by Arnold, Falk, Winther and collaborators. These are however limited to certain types of meshes (mostly, tetrahedral and hexahedral meshes), which limits options for, e.g., local mesh refinement.

In this talk we will introduce the Discrete De Rham complex, a discrete version of one of the most popular complexes of differential operators (involving the gradient, curl and divergence), that can be applied on meshes consisting of generic polytopes. We will use a simple magnetostatic model to motivate the need for (continuous and discrete) complexes, then give a presentation of the lowest-order version of the complex and sketch its links with the CW cochain complex on the mesh. We will then briefly explain how this lowest-order version is naturally extended to an arbitrary-order version, and briefly present the associated properties (Poincaré inequalities, primal and adjoint consistency, commutation properties, etc.) that enable the analysis of schemes based on this complex.

Please contact us for feedback and comments about this page. Last updated on 07 Sep 2022 17:16.