Seminar series
Date
Fri, 29 Apr 2022
Time
16:00 - 17:00
Location
L1
Speaker
Akshat Mugdal and Renee Hoekzema
Speaker: Akshat Mugdal
 
Title: Fantastic arithmetic structures and where to find them
 
Abstract: This talk will be a gentle introduction to additive combinatorics, an area lying somewhat at the intersection of combinatorics, number theory and harmonic analysis, which concerns itself with identification and classification of sets with additive structure. In this talk, I will outline various notions of when a finite set of integers may be considered to be additively structured and how these different notions interconnect with each other, with various examples sprinkled throughout. I will provide some further applications and open problems surrounding this circle of ideas, including a quick study of sets that exhibit multiplicative structure and their interactions with the aforementioned notions of additivity.
 
 
Speaker: Renee Hoekzema 

Title: Exploring the space of genes in single cell transcriptomics datasets

Abstract: Single cell transcriptomics is a revolutionary technique in biology that allows for the measurement of gene expression levels across the genome for many individual cells simultaneously. Analysis of these vast datasets reveals variations in expression patterns between cells that were previously out of reach. On top of discrete clustering into cell types, continuous patterns of variation become visible, which are associated to differentiation pathways, cell cycle, response to treatment, adaptive heterogeneity or what just whatever the cells are doing at that moment. Current methods for assigning biological meaning to single cell experiments relies on predefining groups of cells and computing what genes are differentially expressed between them. The complexity found in modern single cell transcriptomics datasets calls for more intricate methods to biologically interpret both discrete clusters as well as continuous variations. We propose topologically-inspired data analysis methods that identify coherent gene expression patterns on multiple scales in the dataset. The multiscale methods consider discrete and continuous transcriptional patterns on equal footing based on the mathematics of spectral graph theory. As well as selecting important genes, the methodology allows one to visualise and explore the space of gene expression patterns in the dataset.

Please contact us with feedback and comments about this page. Last updated on 24 Apr 2022 09:03.