Seminar series
Tue, 31 May 2022
14:00 - 15:00
Konstantin Rusch
ETH Zurich

Combining physics with machine learning is a rapidly growing field of research. Thereby, most work focuses on leveraging machine learning methods to solve problems in physics. Here, however, we focus on the reverse direction of leveraging structure of physical systems (e.g. dynamical systems modeled by ODEs or PDEs) to construct novel machine learning algorithms, where the existence of highly desirable properties of the underlying method can be rigorously proved. In particular, we propose several physics-inspired deep learning architectures for sequence modelling as well as for graph representation learning. The proposed architectures mitigate central problems in each corresponding domain, such as the vanishing and exploding gradients problem for recurrent neural networks or the oversmoothing problem for graph neural networks. Finally, we show that this leads to state-of-the-art performance on several widely used benchmark problems.

Please contact us for feedback and comments about this page. Last updated on 27 May 2022 11:42.