Tue, 03 May 2022
15:30 - 16:30
Fanny Augeri
Weizmann Institute of Science

The characteristic polynomial of a random Hermitian matrix induces naturally a field on the real line. In the case of the Gaussian Unitary ensemble (GUE), this fields is expected to have a very special correlation structure: the logarithm of this field is log-correlated and its maximum is at the heart of a conjecture from Fyodorov and Simm predicting its asymptotic behavior.   As a first step in this direction, we obtained in collaboration with R. Butez and O. Zeitouni, a central limit theorem for the logarithm of the characteristic polynomial of the Gaussian beta Ensembles and for a certain class of random Jacobi matrices. In this talk, I will explain how the tridiagonal representation of the GUE and orthogonal polynomials techniques allow us to analyse the fluctuations of the characteristic polynomial.

Please contact us for feedback and comments about this page. Last updated on 29 Apr 2022 15:58.