Date
Thu, 24 Nov 2022
Time
12:00 - 13:00
Location
L1
Speaker
Ambrose Yim & Iris Yoon (OCIAM)
Organisation
Mathematical Institute

Hypergraphs for multiscale cycles in structured data

Iris Yoon

Understanding the spatial structure of data from complex systems is a challenge of rapidly increasing importance. Even when data is restricted to curves in three-dimensional space, the spatial structure of data provides valuable insight into many scientific disciplines, including finance, neuroscience, ecology, biophysics, and biology. Motivated by concrete examples arising in nature, I will introduce hyperTDA, a topological pipeline for analyzing the structure of spatial curves that combines persistent homology, hypergraph theory, and network science. I will show that the method highlights important segments and structural units of the data. I will demonstrate hyperTDA on both simulated and experimental data. This is joint work with Agnese Barbensi, Christian Degnbol Madsen, Deborah O. Ajayi, Michael Stumpf, and Heather Harrington.

 

Minmax Connectivity and Persistent Homology 

Ambrose Yim

We give a pipeline for extracting features measuring the connectivity between two points in a porous material. For a material represented by a density field f, we derive persistent homology related features by exploiting the relationship between dimension zero persistent homology of the density field and the min-max connectivity between two points. We measure how the min-max connectivity varies when spurious topological features of the porous material are removed under persistent homology guided topological simplification. Furthermore, we show how dimension one persistent homology encodes a relaxed notion of min-max connectivity, and demonstrate how we can summarise the multiplicity of connections between a pair of points by associating to the pair a sub-diagram of the dimension one persistence diagram.

Please contact us with feedback and comments about this page. Last updated on 22 Nov 2022 12:01.