The neutron transport equation is a linear Boltzmann-type PDE that models radiative transfer processes, and fission nuclear reactions. The computation of the largest eigenvalue of this Boltzmann operator is crucial in nuclear safety studies but it has classically been formulated only at a discretized level, so the predictive capabilities of such computations are fairly limited. In this talk, I will give an overview of the modeling for this equation, as well as recent analysis that leads to an infinite dimensional formulation of the eigenvalue problem. We leverage this point of view to build a numerical scheme that comes with a rigorous, a posteriori estimation of the error between the exact, infinite-dimensional solution, and the computed one.