Date
Thu, 16 Feb 2023
Time
12:00 - 13:00
Location
L1
Speaker
Andrea Giudici & Edwina Yeo

Andrea Giudici: Multiple shapes from one elastomer sheet

Active soft materials, such as Liquid Crystal Elastomers (LCEs), possess a unique property: the ability to change shape in response to thermal or optical stimuli. This makes them attractive for various applications, including bioengineering, biomimetics, and soft robotics. The classic example of a shape change in LCEs is the transformation of a flat sheet into a complex curved surface through the imprinting of a spatially varying deformation field. Despite its effectiveness, this approach has one important limitation: once the deformation field is imprinted in the material, it cannot be amended, hindering the ability to achieve multiple target shapes.

In this talk, I present a solution to this challenge and discuss how modulating the degree of actuation using light intensity offers a route towards programming multiple shapes. Moreover, I introduce a theoretical framework that allows us to sculpt any surface of revolution using light.


Edwina Yeo: Modelling the onset of arterial blood clotting

Arterial blood clot formation (thrombosis) is the leading cause of both stroke and heart attack. The blood protein Von Willebrand Factor (VWF) is critical in facilitating arterial thrombosis. At pathologically high shear rates the protein unfolds and rapidly captures platelets from the flow.

I will present two pieces of modelling to predict the location of clot formation in a diseased artery. Firstly a continuum model to describe the mechanosensitive protein VWF and secondly a model for platelet transport and deposition to VWF. We interface this model with in vitro data of thrombosis in a long, thin rectangular microfluidic geometry. Using a reduced model, the unknown model parameters which determine platelet deposition can be calibrated.

 

Please contact us with feedback and comments about this page. Last updated on 13 Feb 2023 09:54.