Seminar series
Date
Tue, 07 Mar 2023
14:00
Location
L6
Speaker
Maud De Visscher
Organisation
City University London

Kazhdan-Lusztig polynomials are remarkable polynomials associated to pairs of elements in a Coxeter group W. They describe the base change between the standard and Kazhdan-Lusztig bases for the corresponding Hecke algebra. They were discovered by Kazhdan and Lusztig in 1979 and have found applications throughout representation theory and geometry. In 1987, Deodhar introduced the parabolic Kazhdan-Lusztig polynomials associated to a Coxeter group W and a standard parabolic subgroup P. These describe the base change between the standard and Kazhdan-Lusztig bases for the anti-spherical module for the Hecke algebra. (We recover the original definition of Kazhdan and Lusztig by taking the trivial parabolic subgroup).

(Anti-spherical) Hecke categories first rose to mathematical celebrity as the centrepiece of the proof of the (parabolic) Kazhdan-Lusztig positivity conjecture. The Hecke category categorifies the Hecke algebra and the anti-spherical Hecke category categorifies the anti-spherical module. More precisely, it was shown by Elias-Williamson (and Libedinsky-Williamson) that the (parabolic) Kazhdan-Lusztig polynomials are precisely the graded decomposition numbers for the (anti-spherical) Hecke categories over fields of characteristic zero, hence proving positivity of their coefficients.
The (anti-spherical) Hecke categories can be defined over any field. Their graded decomposition numbers over fields of positive characteristic p, the so-called (parabolic) p-Kazhdan-Lusztig polynomials, have been shown to have deep connections with the modular representation theory of reductive groups and symmetric groups. However, these polynomials are notoriously difficult to compute.
Unlike in the case of the ordinary (parabolic) Kazhdan-Lusztig polynomials, there is not even a recursive algorithm to compute them in general.
In this talk, I will discuss the representation of the anti-spherical Hecke categories for (W,P) a Hermitian symmetric pair, over an arbitrary field. In particular, I will explain why the decomposition numbers are characteristic free in this case.
This is joint work with C. Bowman, A. Hazi and E. Norton.

Please contact us with feedback and comments about this page. Last updated on 07 Feb 2023 12:21.