Seminar series
Date
Mon, 16 Jan 2023
15:30
Location
L4
Speaker
Paul Fendley (University of Oxford)

The chromatic polynomial \chi(Q) can be defined for any graph, such that for Q integer it counts the number of colourings. It has many remarkable properties, and I describe several that are derived easily by using fusion categories, familiar from topological quantum field theory. In particular, I define the chromatic algebra, a planar algebra whose evaluation gives the chromatic polynomial. Linear identities of the chromatic polynomial at certain values of Q then follow from the Jones-Wenzl projector of the associated category. An unusual non-linear one called Tutte's golden identity relates \chi(\phi+2) for planar triangulations to the square of \chi(\phi+1), where \phi is the golden mean. Tutte's original proof is purely combinatorial. I will give here an elementary proof by manipulations of a topological invariant related to the Jones polynomial. Time permitting, I will also mention analogous identities for graphs on more general surfaces. Based on work with Slava Krushkal.

Please contact us with feedback and comments about this page. Last updated on 09 Jan 2023 18:13.