Seminar series
Date
Mon, 16 Jan 2023
15:30
Location
L4
Speaker
Paul Fendley (University of Oxford)

The chromatic polynomial \chi(Q) can be defined for any graph, such that for Q integer it counts the number of colourings. It has many remarkable properties, and I describe several that are derived easily by using fusion categories, familiar from topological quantum field theory. In particular, I define the chromatic algebra, a planar algebra whose evaluation gives the chromatic polynomial. Linear identities of the chromatic polynomial at certain values of Q then follow from the Jones-Wenzl projector of the associated category. An unusual non-linear one called Tutte's golden identity relates \chi(\phi+2) for planar triangulations to the square of \chi(\phi+1), where \phi is the golden mean. Tutte's original proof is purely combinatorial. I will give here an elementary proof by manipulations of a topological invariant related to the Jones polynomial. Time permitting, I will also mention analogous identities for graphs on more general surfaces. Based on work with Slava Krushkal.

Last updated on 9 Jan 2023, 6:13pm. Please contact us with feedback and comments about this page.