Seminar series
Date
Mon, 23 Jan 2023
16:00
Location
L6
Speaker
Vivian Kuperberg
Organisation
Tel Aviv University

In 2018, Keating, Rodgers, Roditty-Gershon and Rudnick conjectured that the variance of sums of the divisor function in short intervals is described by a certain piecewise polynomial coming from a unitary matrix integral. That is to say, this conjecture ties a straightforward arithmetic problem to random matrix theory. They supported their conjecture by analogous results in the setting of polynomials over a finite field rather than in the integer setting. In this talk, we'll discuss arithmetic problems over F_q[T] and their connections to matrix integrals, focusing on variations on the divisor function problem with symplectic and orthogonal distributions. Joint work with Matilde Lalín.

Last updated on 18 Jan 2023, 4:48am. Please contact us with feedback and comments about this page.