Seminar series
Date
Tue, 06 Jun 2023
Time
14:00 -
15:00
Location
L6
Speaker
Emile Okada
Organisation
National University of Singapore
For a reductive group defined over a p-adic field, the wavefront set is an invariant of an admissible representations which roughly speaking measures the direction of the singularities of the character near the identity. Studied first by Roger Howe in the 70s, the wavefront set has important connections to Arthur packets, and has been the subject of thorough investigation in the intervening years. One of main lines of inquiry is to determine the relation between the wavefront set and the L-parameter of a representation. In this talk we present new results answering this question for unipotent representations with real infinitesimal character. The results are joint with Dan Ciubotaru and Lucas Mason-Brown.