Thu, 04 May 2023
16:00 - 17:00
Daniel Drimbe
KU Leuven

The pioneering work of Murray and von Neumann shows that any countable discrete group G gives rise in a canonical way to a group von Neumann algebra, denoted L(G). A main theme in operator algebras is to classify group von Neumann algebras, and hence, to understand how much information does L(G) remember of the underlying group G. In the amenable case, the classification problem is completed by the work of Connes from 1970s asserting that for all infinite conjugacy classes amenable groups, their von Neumann algebras are isomorphic.

In sharp contrast, in the non-amenable case, Popa's deformation rigidity/theory (2001) has led to the discovery of several instances when various properties of the group G are remembered by L(G). The goal of this talk is to survey some recent progress in this direction.

Please contact us with feedback and comments about this page. Last updated on 26 Apr 2023 09:32.