Date
Tue, 04 Jul 2023
Time
17:00 - 18:00
Location
N3:12
Speaker
Siran Li
Organisation
NYU Shanghai

We discuss $C^1$-regularity and developability of isometric immersions of flat domains into $\mathbb{R}^3$ enjoying a local fractional Sobolev $W^{1+s;2/s}$-regularity for $2/3 \leq s < 1$, generalising the known results on Sobolev (by Pakzad) and H\"{o}lder (by De Lellis--Pakzad) regimes. Ingredients of the proof include analysis of the weak Codazzi equations of isometric immersions, the study of $W^{1+s;2/s}$-gradient deformations with symmetric derivative and vanishing distributional Jacobian determinant, and the theory of compensated compactness. Joint work with M. Reza Pakzad and Armin Schikorra.

Last updated on 8 Jun 2023, 4:36pm. Please contact us with feedback and comments about this page.