Mon, 06 Nov 2023
16:30 - 17:30
Tomasz Dębiec
University of Warsaw

We consider the Hookean dumbbell model, a system of nonlinear PDEs arising in the kinetic theory of homogeneous dilute polymeric fluids. It consists of the unsteady incompressible Navier-Stokes equations in a bounded Lipschitz domain, coupled to a Fokker-Planck-type parabolic equation with a centre-of-mass diffusion term, for the probability density function, modelling the evolution of the configuration of noninteracting polymer molecules in the solvent.

The micro-macro interaction is reflected by the presence of a drag term in the Fokker-Planck equation and the divergence of a polymeric extra-stress tensor in the Navier-Stokes balance of momentum equation. In a simplified case where the drag term is corotational, we prove global existence of weak solutions and discuss some of their properties: we use the relative energy method to deduce a weak-strong uniqueness type result, and derive the macroscopic closure of the kinetic model: a corotational Oldroyd-B model with stress-diffusion.

In the general noncorotational case, we consider “generalised dissipative solutions” — a relaxation of the usual notion of weak solution, allowing for the presence of a, possibly nonzero, defect measure in the momentum equation, which accounts for the lack of compactness in the polymeric extra-stress tensor. Joint work with Endre Suli (Oxford).

Please contact us with feedback and comments about this page. Last updated on 31 Oct 2023 16:41.