Seminar series
Mon, 23 Oct 2023
Claudius Zibrowius
Durham University

About 20 years ago, Dror Bar-Natan described an elegant generalisation
of Khovanov homology to tangles with any number of endpoints, by
considering certain quotients of two-dimensional relative cobordism
categories.  I claim that these categories are in general not
well-understood (not by me in any case).  However, if we restrict to
tangles with four endpoints, things simplify and Bar-Natan's category
turns out to be closely related to the wrapped Fukaya category of the
four-punctured sphere.  This relationship gives rise to a symplectic
interpretation of Khovanov homology that is useful both for doing
calculations and for proving theorems.  I will discuss joint work in
progress with Artem Kotelskiy and Liam Watson where we investigate what
happens when we fill in one of the punctures.

Please contact us with feedback and comments about this page. Last updated on 17 Oct 2023 09:02.