Fri, 20 Oct 2023
12:00 - 13:00
James Taylor
University of Oxford

Typically, the algebraic closure of a non-algebraically closed field F is an infinite extension of F. However, this doesn't always have to happen: for example consider $\mathbb{R}$ inside $\mathbb{C}$. Are there any other examples? Yes: for example you can consider the index two subfield of the algebraic numbers, defined by intersecting with $\mathbb{R}$. However this is still similar to the first example: the degree of the extension is two, and we extract a square root of $-1$ to obtain the algebraic closure. The Artin-Schreier Theorem tells us that amazingly this is always the case: if $F$ is a field for which the algebraic closure is a non trivial finite extension $L$, then this forces F to have characteristic 0, L is degree two over $F$, and $L = F(i)$ for some $i$ with $i^2 = -1$. I.e. all such extensions "look like" $\mathbb{C} / \mathbb{R}$. In this expository talk we will give an overview of the proof of this theorem, and try to get some feeling for why this result is true.


Please contact us with feedback and comments about this page. Last updated on 13 Oct 2023 13:23.