Seminar series
Date
Tue, 07 Nov 2023
Time
14:00 - 15:00
Location
L5
Speaker
Finn Wiersig
Organisation
University of Oxford

The theory of D-modules has found remarkable applications in various mathematical areas, for example, the representation theory of complex semi-simple Lie algebras. Two pivotal theorems in this field are the Beilinson-Bernstein Localisation Theorem and the Riemann-Hilbert Correspondence. This talk will explore a p-adic analogue. Ardakov-Wadsley introduced the sheaf D-cap of infinite order differential operators on a given smooth rigid-analytic variety to develop a p-adic counterpart for the Beilinson-Bernstein localisation. However, the classical approach to the Riemann-Hilbert Correspondence does not apply in the p-adic context. I will present an alternative approach, introducing a solution functor for D-cap-modules using new methods from p-adic Hodge theory.

Last updated on 6 Nov 2023, 10:17am. Please contact us with feedback and comments about this page.