15:30
One can think of the stabilisation of an ∞-category as the ∞-category of objects that admit infinite deloopings. For example, the ∞-category of spectra is the stabilisation of the ∞-category of homotopy types. Costabilisation is the opposite notion of stabilisation, where we are interested in objects that allow infinite desuspensions. It is easy to see that the costabilisation of the ∞-category of homotopy types is trivial. Fix a prime number p. In this talk I will show that the costablisation of the ∞-category of T(h)-local spectral Lie algebras is equivalent to the ∞-category of T(h)-local spectra, where T(h) denotes a p-local telescope spectrum of height h. A key ingredient of the proof is to relate spectral Lie algebras to (spectral) Eₙ algebras via Koszul duality.