Thu, 29 Feb 2024
14:00 - 15:00
Lecture Room 3
Stefano Zampini
King Abdullah University of Science and Technology (KAUST)

In recent years, we have witnessed the emergence of scientific machine learning as a data-driven tool for the analysis, by means of deep-learning techniques, of data produced by computational science and engineering applications.  At the core of these methods is the supervised training algorithm to learn the neural network realization, a highly non-convex optimization problem that is usually solved using stochastic gradient methods.

However, distinct from deep-learning practice, scientific machine-learning training problems feature a much larger volume of smooth data and better characterizations of the empirical risk functions, which make them suited for conventional solvers for unconstrained optimization.

In this talk, we empirically demonstrate the superior efficacy of a trust region method based on the Gauss-Newton approximation of the Hessian in improving the generalization errors arising from regression tasks when learning surrogate models for a wide range of scientific machine-learning techniques and test cases. All the conventional solvers tested, including L-BFGS and inexact Newton with line-search, compare favorably, either in terms of cost or accuracy, with the adaptive first-order methods used to validate the surrogate models.

Please contact us with feedback and comments about this page. Last updated on 20 Feb 2024 16:43.