In this talk, we discuss continuous in time dynamics for the problem of approaching the set of zeros of a single-valued monotone and continuous operator V . Such problems are motivated by minimax convexconcave and, in particular, by convex optimization problems with linear constraints. The central role is played by a second-order dynamical system that combines a vanishing damping term with the time derivative of V along the trajectory, which can be seen as an analogous of the Hessian-driven damping in case the operator is originating from a potential. We show that these methods exhibit fast convergence rates for kV (z(t))k as t ! +1, where z( ) denotes the generated trajectory, and for the restricted gap function, and that z( ) converges to a zero of the operator V . For the corresponding implicit and explicit discrete time models with Nesterov’s momentum, we prove that they share the asymptotic features of the continuous dynamics.
Extensions to variational inequalities and fixed-point problems are also addressed. The theoretical results are illustrated by numerical experiments on bilinear games and the training of generative adversarial networks.
Further Information
Please note; the seminar is taking place in Lecture Room 4 on this occasion