Seminar series
Thu, 06 Jun 2024
17:00 - 18:00
Leo Gitin
University of Oxford

Does the limit construction for inverse systems of first-order structures preserve elementary equivalence? I will give sufficient conditions for when this is the case. Using Karp's theorem, we explain the connection between a syntactic and formal-semantic approach to inverse limits of structures. We use this to give a simple proof of van den Dries' AKE theorem (in ZFC), a general AKE theorem for mixed characteristic henselian valued fields with no assumptions on ramification. We also recall a seemingly forgotten result of Feferman, that can be interpreted as a "saturated" AKE theorem in positive characteristic: given two elementarily equivalent $\aleph_1$-saturated fields $k$ and $k'$, the formal power series rings $k[[t]]$ and $k'[[t]]$ are elementarily equivalent as well. We thus hope to popularise some ideas from categorical logic.

Please contact us with feedback and comments about this page. Last updated on 04 Jun 2024 12:20.