Date
Thu, 27 Jun 2024
Time
15:15 - 16:15
Location
C1
Speaker
Rachael Norton
Organisation
St Olaf College

The set $M_n(\mathbb{R})$ of all $n \times n$ matrices over the real numbers is an example of an algebraic structure called a $C^*$-algebra. The subalgebra $D$ of diagonal matrices has special properties and is called a \emph{Cartan subalgebra} of $M_n(\mathbb{R})$. Given an arbitrary $C^*$-algebra, it can be very hard (but also very rewarding) to find a Cartan subalgebra, if one exists at all. However, if the $C^*$-algebra is generated by a cocycle $c$ and a group (or groupoid) $G$, then it is natural to look within $G$ for a subgroup (or subgroupoid) $S$ that may give rise to a Cartan subalgebra. In this talk, we identify sufficient conditions on $S$ and $c$ so that the subalgebra generated by $(S,c)$ is indeed a Cartan subalgebra of the $C^*$-algebra generated by $(G,c)$. We then apply our theorem to $C^*$-algebras generated by $k$-graphs, which are directed graphs in higher dimensions. This is joint work with J. Briones Torres, A. Duwenig, L. Gallagher, E. Gillaspy, S. Reznikoff, H. Vu, and S. Wright.

Last updated on 20 Jun 2024, 1:18pm. Please contact us with feedback and comments about this page.