Date
Thu, 21 Nov 2024
Time
12:00 - 13:00
Location
L3
Speaker
Dr Marc Suñé & Dr Georgia Brennan
Organisation
Mathematical Institute

Tension-induced giant actuation in elastic sheets

Dr. Marc Suñé

Buckling is normally associated with a compressive load applied to a slender structure; from railway tracks in extreme heat to microtubules in cytoplasm, axial compression is relieved by out-of-plane buckling. However, recent studies have demonstrated that tension applied to structured thin sheets leads to transverse motion that may be harnessed for novel applications, such as kirigami grippers, multi-stable `groovy-sheets', and elastic ribbed sheets that close into tubes. Qualitatively similar behaviour has also been observed in simulations of thermalized graphene sheets, where clamping along one edge leads to tilting in the transverse direction. I will discuss how this counter-intuitive behaviour is, in fact, generic for thin sheets that have a relatively low stretching modulus compared to the bending modulus, which allows `giant actuation' with moderate strain.

Last updated on 15 Nov 2024, 3:00pm. Please contact us with feedback and comments about this page.