Seminar series
Date
Tue, 15 Oct 2024
16:00
16:00
Location
C3
Speaker
Andrea Vaccaro
Organisation
University of Münster
In this talk, based on a joint work with Ilijas Farah, I will present an application of an old continuous selection theorem due to Michael to the study of II1 factors. More precisely, I'll show that if two strongly continuous paths (or loops) of projections (p_t), (q_t), for t in [0,1], in a II1 factor are such that every p_t is subequivalent to q_t, then the subequivalence can be realized by a strongly continuous path (or loop) of partial isometries. I will then use an extension of this result to solve affirmatively the so-called trace problem for factorial W*-bundles whose base space is 1-dimensional.