Date
Mon, 12 Aug 2024
16:00
Location
C4
Speaker
Jose Carrion
Organisation
Texas Christian University
For separable C*-algebras A and B, we define a topology on the set [[A,B]] consisting of homotopy classes of asymptotic morphisms from A to B. This gives an enrichment of the Connes–Higson asymptotic category over topological spaces. We show that the Hausdorffization of this category is equivalent to the shape category of Dadarlat. As an application, we obtain a topology on the E-theory group E(A,B) with properties analogous to those of the topology on KK(A,B). The Hausdorffized E-theory group EL(A,B)  is also introduced and studied. We obtain a continuity result for the functor EL(- , B) which implies a new continuity result for the functor KL(-, B).
 
This is joint work with Christopher Schafhauser.
 
Last updated on 11 Aug 2024, 6:52pm. Please contact us with feedback and comments about this page.