Date
Mon, 10 Feb 2025
16:30
Location
L4
Speaker
Helge Holden
Organisation
NTNU, Norway

The Camassa–Holm equation, which is nonlinear one-dimensional nonlinear PDE which is completely integrable and has  applications in several areas, has received considerable attention. We will discuss recent work regarding the Camassa—Holm equation with transport noise, more precisely, the equation $u_t+uu_x+P_x+\sigma u_x \circ dW=0$ and $P-P_{xx}=u^2+u_x^2/2$. În particular, we will show existence of a weak, global, dissipative solution of the Cauchy initial-value problem on the torus.  This is joint work with L. Galimberti (King’s College), K.H. Karlsen (Oslo), and P.H.C. Pang (NTNU/Oslo).

Last updated on 30 Jan 2025, 8:18am. Please contact us with feedback and comments about this page.