We develop a model based on mean-field games of competitive firms producing similar goods according to a standard AK model with a depreciation rate of capital generating pollution as a byproduct. Our analysis focuses on the widely-used cap-and-trade pollution regulation. Under this regulation, firms have the flexibility to respond by implementing pollution abatement, reducing output, and participating in emission trading, while a regulator dynamically allocates emission allowances to each firm. The resulting mean-field game is of linear quadratic type and equivalent to a mean-field type control problem, i.e., it is a potential game. We find explicit solutions to this problem through the solutions to differential equations of Riccati type. Further, we investigate the carbon emission equilibrium price that satisfies the market clearing condition and find a specific form of FBSDE of McKean-Vlasov type with common noise. The solution to this equation provides an approximate equilibrium price. Additionally, we demonstrate that the degree of competition is vital in determining the economic consequences of pollution regulation.
This is based on joint work with Gianmarco Del Sarto and Marta Leocata.