Seminar series
Date
Tue, 15 Oct 2024
14:30
Location
L6
Speaker
Joel Thacker
Organisation
(University of Oxford)

The problem of finding an explicit description of the centre of the restricted universal enveloping algebra of sl2 for a general prime characteristic p is still open. We use a computational approach to find a basis for the centre for small p. Building on this, we used a special central element t to construct a complete set of (p+1)/2 orthogonal primitive idempotents e_i, which decompose Z into one 1-dimensional and (p-1)/2 3-dimensional subspaces e_i Z. These allow us to compute e_i N as subspaces of the e_i Z, where N is the largest nilpotent ideal of Z. Looking forward, the results perhaps suggest N is a free k[T] / (T^{(p-1)/2}-1)-module of rank 2.

Last updated on 30 Sep 2024, 11:12am. Please contact us with feedback and comments about this page.