Seminar series
Date
Thu, 22 Jan 2009
Time
12:30 - 13:30
Location
Gibson 1st Floor SR
Speaker
Mason Porter
Organisation
University of Oxford

I will discuss the investigatation of highly nonlinear solitary waves in heterogeneous one-dimensional granular crystals using numerical computations, asymptotics, and experiments. I will focus primarily on periodic arrangements of particles in experiments in which stiffer/heavier stainless stee are alternated with softer/lighter ones.

The governing model, which is reminiscent of the Fermi-Pasta-Ulam lattice, consists of a set of coupled ordinary differential equations that incorporate Hertzian interactions between adjacent particles. My collaborators and I find good agreement between experiments and numerics and gain additional insight by constructing an exact compaction solution to a nonlinear partial differential equation derived using long-wavelength asymptotics. This research encompasses previously-studied examples as special cases and provides key insights into the influence of heterogeneous, periodic lattice on the properties of the solitary waves.

I will briefly discuss more recent work on lattices consisting of randomized arrangements of particles, optical versus acoustic modes, and the incorporation of dissipation.

Last updated on 3 Apr 2022, 1:32am. Please contact us with feedback and comments about this page.