Seminar series
Date
Thu, 28 Nov 2024
16:00
Location
Lecture Room 3
Speaker
Alexandru Pascadi
Organisation
University of Oxford

A number of results on classical problems in analytic number theory rely on bounds for multilinear forms of Kloosterman sums, which in turn use deep inputs from the spectral theory of automorphic forms. We’ll discuss our recent work available at arxiv.org/abs/2404.04239, which uses this interplay between counting problems, exponential sums, and automorphic forms to improve results on the greatest prime factor of $n^2+1$, and on the exponents of distribution of primes and smooth numbers in arithmetic progressions.
The key ingredient in this work are certain “large sieve inequalities” for exceptional Maass forms, which improve classical results of Deshouillers-Iwaniec in special settings. These act as on-average substitutes for Selberg’s eigenvalue conjecture, narrowing (and sometimes completely closing) the gap between previous conditional and unconditional results.

Last updated on 15 Nov 2024, 11:27am. Please contact us with feedback and comments about this page.