12:00
The celebrated Splitting Theorem by Cheeger-Gromoll states that a manifold with non-negative Ricci curvature which contains a line is isometric to a product, where one of the factors is the real line. A related result was later proved by Kasue. He showed that a manifold with non-negative Ricci curvature and two mean convex boundary components, one of which is compact, is also isometric to a product. In this talk, I will present a variant of Kasue’s result based on joint work with Andrea Mondino. We consider manifolds with non-negative Ricci curvature and disconnected mean convex boundary. We show that if one boundary component is parabolic and convex, then the manifold is a product, where one of the factors is an interval of the real line. The result is an application of recently developed tools in synthetic geometry and exploits the interplay between Ricci curvature and optimal transport.