Date
Tue, 04 Feb 2025
16:00
Location
C3
Speaker
Kenny de Commer
Organisation
VUB

Given two von Neumann algebras A,B with an action by a locally compact (quantum) group G, one can consider its associated equivariant correspondences, which are usual A-B-correspondences (in the sense of Connes) with a compatible unitary G-representation. We show how the category of such equivariant A-B-correspondences carries an analogue of the Fell topology, which is preserved under natural operations (such as crossed products or equivariant Morita equivalence). If time permits, we will discuss one particular interesting example of such a category of equivariant correspondences, which quantizes the representation category of SL(2,R). This is based on joint works with Joeri De Ro and Joel Dzokou Talla. 

Last updated on 27 Jan 2025, 12:50pm. Please contact us with feedback and comments about this page.