Date
Tue, 11 Feb 2025
16:00
Location
C3
Speaker
Alistair Miller
Organisation
University of Southern Denmark

Self-similar groups are groups of automorphisms of infinite rooted trees obeying a simple but powerful rule. Under this rule, groups with exotic properties can be generated from very basic starting data, most famously the Grigorchuk group which was the first example of a group with intermediate growth.

Nekrashevych introduced a groupoid and a C*-algebra for a self-similar group action on a tree as models for some underlying noncommutative space for the system. Our goal is to compute the K-theory of the C*-algebra and the homology of the groupoid. Our main theorem provides long exact sequences which reduce the problems to group theory. I will demonstrate how to apply this theorem to fully compute homology and K-theory through the example of the Grigorchuk group.

This is joint work with Benjamin Steinberg.

Last updated on 30 Jan 2025, 11:47am. Please contact us with feedback and comments about this page.