13:00
Realizing chiral global symmetries on a finite lattice is a long-standing challenge in lattice gauge theory, with potential implications for non-perturbative regularization of the Standard Model. One of the simplest examples of such a symmetry is the axial U(1) symmetry of the 1+1d massless Dirac fermion field theory: it acts by equal and opposite phase rotations on the left- and right-moving Weyl components of the Dirac field. This field theory also has a vector U(1) symmetry which acts identically on left- and right-movers. The two U(1) symmetries exhibit a mixed anomaly, known as the chiral anomaly. In this talk, we will discuss how both symmetries are realized as ordinary U(1) symmetries of an "ultra-local" lattice Hamiltonian, on a finite-dimensional Hilbert space. Intriguingly, the anomaly of the Abelian U(1) symmetries in the infrared (IR) field theory is matched on the lattice by a non-Abelian Lie algebra. The lattice symmetry forces the low-energy phase to be gapless, closely paralleling the effects of the anomaly in the field theory.