Date
Thu, 06 Feb 2025
Time
12:00 - 13:00
Location
L3
Speaker
Christiana Mavroyiakoumou
Organisation
Courant Institute of Mathematical Sciences

We consider two problems in fluid dynamics: the collective locomotion of flying animals and the interaction of vortex rings with fluid interfaces. First, we present a model of formation flight, viewing the group as a material whose properties arise from the flow-mediated interactions among its members. This aerodynamic model explains how flapping flyers produce vortex wakes and how they are influenced by the wakes of others. Long in-line arrays show that the group behaves as a soft, excitable "crystal" with regularly ordered member "atoms" whose positioning is susceptible to deformations and dynamical instabilities. Second, we delve into the phenomenon of vortex ring reflections at water-air interfaces. Experimental observations reveal reflections analogous to total internal reflection of a light beam. We present a vortex-pair--vortex-sheet model to simulate this phenomenon, offering insights into the fundamental interactions of vortex rings with free surfaces.

Further Information

Christiana is an Assistant Professor at the Courant Institute of Mathematical Sciences (New York University) working in the Applied Math Lab, primarily with Leif Ristroph and Jun Zhang. Her interests are in using modeling, numerical simulations, and experiments to study fluid dynamical problems, with an emphasis on fluid-structure interactions.

Currently Christiana is working on understanding the role of flow interactions in flying bird formations and the hydrodynamics of swimming fish.

Last updated on 7 Jan 2025, 10:47am. Please contact us with feedback and comments about this page.