The beautiful displays exhibited by fish schools and bird flocks have long fascinated scientists, but the role of their complex behavior remains largely unknown. In particular, the influence of hydrodynamic interactions on schooling and flocking has been the subject of debate in the scientific literature. I will present a model for flapping wings that interact hydrodynamically in an inviscid fluid, wherein each wing is represented as a plate that executes a prescribed time-periodic kinematics. The model generalizes and extends thin-airfoil theory by assuming that the flapping amplitude is small, and permits consideration of multiple wings through the use of conformal maps and multiply-connected function theory. We find that the model predictions agree well with experimental data on freely-translating, flapping wings in a water tank. The results are then used to motivate a reduced-order model for the temporally nonlocal interactions between schooling wings, which consists of a system of nonlinear delay-differential equations. We obtain a PDE as the mean-field limit of these equations, which we find supports traveling wave solutions. Generally, our results indicate how hydrodynamics may mediate schooling and flocking behavior in biological contexts.
Further Information
Anand Oza is Associate Professor in the Department of Mathematical Sciences as a part of the Complex Flows and Soft Matter (CFSM) Group. He is interested in fluid mechanics and nonlinear dynamics, with applications to soft matter physics and biology. His research utilizes a combination of analytical techniques and numerical simulations, collaborating with experimentalists whenever possible.