Seminar series
Date
Mon, 20 Jan 2025
15:30
Location
L5
Speaker
Naomi Andrew
Organisation
Oxford University

The Farrell--Jones conjecture predicts that the algebraic K-theory of a group ring is isomorphic to a certain equivariant homology theory, and there are also versions for L-theory and Waldhausen's A-theory. In principle, this provides a way to calculate these K-groups, and has many applications. These include classifying manifolds admitting a given fundamental group and a positive resolution of the Borel conjecture.

I will discuss work with Yassine Guerch and Sam Hughes on the Farrell--Jones conjecture for extensions of relatively hyperbolic groups, as well as an application to their automorphism groups in the one-ended case. The methods are from geometric group theory: we go via the theory of JSJ decompositions to produce acylindrical actions on trees.

Last updated on 14 Jan 2025, 10:59pm. Please contact us with feedback and comments about this page.