Seminar series
Date
Thu, 22 May 2025
16:00
Location
Lecture Room 4
Speaker
Alex Bartel
Organisation
University of Glasgow

If $E/\mathbb{Q}$ is an elliptic curve, and $F/\mathbb{Q}$ is a finite Galois extension, then $E(F)$ is not merely a finitely generated abelian group, but also a Galois module. If we fix a finite group $G$, and let $F$ vary over all $G$-extensions, then what can we say about the statistical behaviour of $E(F)$ as a $\mathbb{Z}[G]$-module? In this talk I will report on joint work with Adam Morgan, in which we investigate the simplest non-trivial special case of this very general question. Our work has surprising connections to questions about frequency of failure of the Hasse principle for genus 1 hyperelliptic curves, and to work of Heath-Brown on 2-Selmer group distributions in quadratic twist families.

Last updated on 4 May 2025, 8:24pm. Please contact us with feedback and comments about this page.