16:00
A landmark result in the study of locally compact, abelian groups is the Pontryagin duality. In simple terms, it says that for a given locally compact, abelian group G, one can uniquely associate another locally compact, abelian group called the Pontryagin dual of G. In the realm of C*-algebras, whenever such an abelian group G acts on a C*-algebra A, there is a canonical action of the dual group of G on the crossed product of A by G. In particular, it is natural to ask to what extent one can relate properties of the given G-action to those of the dual action.
In this talk, I will first introduce a property for actions of locally compact abelian groups called the abelian Rokhlin property and then state a duality type result for this property. While the abelian Rokhlin property is in general weaker than the known Rokhlin property, these two properties coincide in the case of the acting group being the real numbers. Using the duality result mentioned above, I will give new examples of continuous actions of the real numbers which satisfy the Rokhlin property. Part of this talk is based on joint work with Johannes Christensen and Gábor Szabó.