Date
Fri, 02 May 2025
13:00
Location
L5
Speaker
Ka Man Yim
Organisation
Cardiff University

The join button will be published 30 minutes before the seminar starts (login required).

The Morse-Conley complex is a central object in information compression in topological data analysis, as well as the application of homological algebra to analysing dynamical systems. Given a poset-graded chain complex, its Morse-Conley complex is the optimal chain-homotopic reduction of the initial complex that respects the poset grading.  In this work, we give a purely algebraic derivation of the Morse-Conley complex using homological perturbation theory. Unlike Forman’s discrete Morse theory for cellular complexes, our algebraic formulation does not require the computation of acyclic partial matchings of cells.  We show how this algebraic perspective also yields efficient algorithms for computing the Conley complex.  This talk features joint work with Álvaro Torras Casas and Ulrich Pennig in "Computing Connection Matrices of Conley Complexes via Algebraic Morse Theory" (arXiv:2503.09301). 
 

Last updated on 28 Apr 2025, 12:24pm. Please contact us with feedback and comments about this page.