13:00
Note: we would recommend to join the meeting using the Teams client for best user experience.
Alesker's theory of generalized valuations unifies smooth measures and constructible functions on real analytic manifolds, extending classical operations on measures. Therefore, operations on generalized valuations can be used to define integral transforms that unify both classical Radon transforms and their topological analogues based on the Euler characteristic, which have been successfully used in shape analysis. However, this unification is proven under rather restrictive assumptions in Alesker's original paper, leaving key aspects conjectural. In this talk, I will present a recent result obtained with A. Bernig that significantly closes this gap by proving that the two approaches indeed coincide on constructible functions under mild transversality assumptions. Our proof relies on a comparison between these operations and operations on characteristic cycles.