14:00
In this talk, I will present a representation-theoretical approach to constructing a non-commutative analogue of the classical Laplace transform on Lie groups. I will begin by discussing the motivations for such a generalization, emphasizing its connections with harmonic analysis, probability theory, and the study of evolution equations on non-commutative spaces. I will also outline some of the key challenges that arise when extending the Laplace transform to the setting of Lie groups, including the non-commutativity of the group operation and the complexity of its dual space.
The main part of the talk will focus on an explicit construction of the Laplace transform in the framework of connected, simply connected nilpotent Lie groups. This construction relies on Kirillov’s orbit method, which provides a powerful bridge between the geometry of coadjoint orbits and the representation theory of nilpotent groups.
As an application, I will describe an operator-theoretic analogue of the classical Müntz–Szász theorem, establishing a density result for a family of generalized polynomials in associated with the group setting. This result highlights the strength of the representation-theoretical approach and its potential for solving classical approximation problems in a non-commutative context.