Seminar series
Date
Tue, 16 Jun 2009
Time
12:30 - 13:30
Location
Gibson 1st Floor SR
Speaker
Andre Sonnet
Organisation
University of Strathclyde

The orientational order of a nematic liquid crystal in a spatially inhomogeneous flow situation is best described by a Q-tensor field because of the defects that inevitably occur. The evolution is determined by two equations. The flow is governed by a generalised Stokes equation in which the divergence of the stress tensor also depends on Q and its time derivative. The evolution of Q is governed by a convection-diffusion type equation that contains terms nonlinear in Q that stem from a Landau-de Gennes potential.

In this talk, I will show how the most general evolution equations can be derived from a dissipation principle. Based on this, I will identify a specific model with three viscosity coefficients that allows the contribution of the orientation to the viscous stress to be cast in the form of a Q-dependent body force. This leads to a convenient time-discretised strategy for solving the flow-orientation problem using two alternating steps. First, the flow field of the Stokes flow is computed for a given orientation field. Second, with the given flow field, one time step of the orientation equation is carried out. The new orientation field is then used to compute a new body force which is again used in the Stokes equation and so forth.

For some simple test applications at low Reynolds numbers, it is found that the non-homogeneous orientation of the nematic liquid crystal leads to non-linear flow effects similar to those known from Newtonian flow at high Reynolds numbers.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.