Date
Thu, 23 Oct 2025
Time
13:00 - 14:00
Location
Lecture Room 5
Speaker
Xinyu Li
Organisation
Mathematical Institute (University of Oxford)

We propose a new framework of Markov α-potential games to study Markov games. 

We show that any Markov game with finite-state and finite-action is a Markov α-potential game, and establish the existence of an associated α-potential function. Any optimizer of an α-potential function is shown to be an α-stationary Nash equilibrium. We study two important classes of practically significant Markov games, Markov congestion games and the perturbed Markov team games, via the framework of Markov α-potential games, with explicit characterization of an upper bound for αand its relation to game parameters. 

Additionally, we provide a semi-infinite linear programming based formulation to obtain an upper bound for α for any Markov game. 

Furthermore, we study two equilibrium approximation algorithms, namely the projected gradient- ascent algorithm and the sequential maximum improvement algorithm, along with their Nash regret analysis.

 

This talk is part of the Erlangen AI Hub.

 

 

 

Last updated on 7 Oct 2025, 11:44am. Please contact us with feedback and comments about this page.