Consider a scalar conservation law with a spatially discontinuous flux at a single point x = 0, and assume that the flux is uniformly convex when x ̸= 0. I will discuss controllability problems for AB-entropy solutions associated to the so-called (A, B)-interface connection. I will first present a characterization of the set of profiles of AB-entropy solutions at a time horizon T > 0, as fixed points of a backward-forward solution operator. Next, I will address the problem of identifying the set of initial data driven by the corresponding AB-entropy solution to a given target profile ω T, at a time horizon T > 0. These results rely on the introduction of proper concepts of AB-backward solution operator, and AB-genuine/interface characteristics associated to an (A, B)-interface connection, and exploit duality properties of backward/forward shocks for AB-entropy solutions.
Based on joint works with Luca Talamini (SISSA-ISAS, Trieste)