Seminar series
Date
Thu, 19 Feb 2026
Time
12:00 -
13:00
Location
L3
Speaker
Dr Fiyanshu Kaka & Carmela Moschella
Organisation
(Mathematical Institute University of Oxford)
The join button will be published 30 minutes before the seminar starts (login required).
Fiyanshu Kaka
Title:
Impact of Electrolyte Microstructure on Power Density in Solid-State Batteries: Insights from Phase-Field Modelling
Abstract:
This talk presents a mesoscopic modelling framework that links electrolyte microstructure to cell-level performance in solid-state batteries. Using a unified diffuse-interface formulation expressed directly in electrochemical potentials, the approach simulates solid polymer electrolyte blend morphologies and evaluates coupled ionic transport and interfacial kinetics within these microstructures. By embedding the resulting morphologies into full cell-scale electrochemical models, the framework provides quantitative guidance for selecting optimal blend compositions to maximize power density. A central finding is that, beyond microstructure geometry alone, energy-level alignment between electrolyte phases critically shapes effective ionic pathways and rate performance.
Further Information
Fiyanshu Kaka is a Research Associate in Battery Modelling at the Mathematical Institute, University of Oxford. His research specialises in the mathematical modelling of energy systems, with a focus on bridging the gap between microstructural fidelity and computational efficiency.
Fiyanshu's modelling work began at the mesoscopic scale, where he employed phase-field methods to unravel complex process-structure-property relationships. Initially, he applied these microstructure-aware frameworks to photovoltaics, specifically optimising ternary organic solar cells. His focus subsequently shifted to energy storage, where he investigated the morphological dynamics of solid-state batteries and the influence of solid electrolyte microstructures on performance.
Currently, he is working on reduced-order models for Li-ion batteries and newer chemistries. By distilling high-fidelity mesoscopic insights into efficient, robust mathematical frameworks, he aims to accelerate the prediction of battery performance and lifespan. Before joining Oxford, Fiyanshu served as an Assistant Professor at the Defence Institute of Advanced Technology, India and holds a PhD in Materials Engineering from the Indian Institute of Science, Bangalore.