The join button will be published 30 minutes before the seminar starts (login required).
Further Information
Dr Rob Van Gorder’s research focuses on how physical phenomena can be described, predicted, and controlled using applied mathematics. He works across mathematical modelling, analytical and asymptotic methods, and numerical simulation, applying this combination to a wide range of physical systems.
His interests in fluid dynamics centre on fundamental flow structures—such as vortices, bubbles, waves, and boundary layers—and how they evolve, persist, or break apart. He also studies spatial instabilities and pattern formation, investigating how mechanisms such as Turing and Benjamin–Feir instabilities extend to heterogeneous or non-autonomous systems arising in chemistry, physics, biology, and epidemiology.
In theoretical physics, Dr Van Gorder works on quantum mechanics, quantum fluids, and nonlinear waves, including the dynamics of Bose–Einstein condensates, quantised vortices in superfluid helium, and confined quantum systems. Across these areas, he aims to understand how nonlinear and quantum systems behave under realistic constraints and external forcing.
His recent publications include work on pattern formation and diffusive instabilities in Proceedings of the Royal Society A.