Date
Tue, 02 Dec 2025
16:00
Location
C3
Speaker
Itamar Vigdorovich
Organisation
UCSD

The simplex of traces of a unital C*-algebra has long been regarded as a central invariant in the theory. Likewise, from the group-theoretic perspective, the simplex of traces of a discrete group (namely, the simplex of traces of its maximal C*-algebra) is a fundamental object in harmonic analysis, and the study of this simplex led to many applications in recent years.

Itamar Vigdorovich , UCSD, will discuss several results describing the simplex of traces in concrete and significant cases. These include Property (T) groups and especially higher rank lattices, for which the simplex of traces is as tame as possible. In contrast, for free products, the simplex is typically as wild as possible, yet still admits a canonical and universal structure—the Poulsen simplex. In ongoing work, an analogous result is obtained for the space of traces on the fundamental group of a closed surface of genus g2.

Itamar presents these results, outlines the main ideas behind the proofs, and gives an overview of the central concepts. The talk is based on joint works with Gao, Ioana, Levit, Orovitz, Slutsky, and Spaas.

Last updated on 26 Nov 2025, 9:55am. Please contact us with feedback and comments about this page.