Date
Thu, 03 Dec 2009
Time
14:00 - 15:00
Location
3WS SR
Speaker
Prof. Andre Weideman
Organisation
University of Stellenbosch

We consider rational approximations to the Faddeeva or plasma dispersion function, defined

as

$w(z) = e^{-z^{2}} \mbox{erfc} (-iz)$.

With many important applications in physics, good software for

computing the function reliably everywhere in the complex plane is required. In this talk

we shall derive rational approximations to $w(z)$ via quadrature, M\"{o}bius transformations, and best approximation. The various approximations are compared with regard to speed of convergence, numerical stability, and ease of generation of the coefficients of the formula.

In addition, we give preference to methods for which a single expression yields uniformly

high accuracy in the entire complex plane, as well as being able to reproduce exactly the

asymptotic behaviour

$w(z) \sim i/(\sqrt{\pi} z), z \rightarrow \infty$

(in an appropriate sector).

This is Joint work with: Stephan Gessner, St\'efan van der Walt

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.