Date
Tue, 24 Feb 2026
17:00
Location
C3
Speaker
Joachim Zacharias
Organisation
University of Glasgow

AF-embeddability, i.e., the question whether a given C*-algebra can be realised as a subalgebra of an AF-algebra, has been studied for a long time with prominent early results by Pimsner and Voicuescu who constructed such embeddings for irrational rotation algebras in 1980. Since then, many AF-embeddings have been constructed for concrete examples but also many non-constructive AF-embeddability results have been obtained for classes of algebras typically assuming the UCT. 

In this talk by Joachim Zacharias, we will consider a separable unital C*-algebra A of decomposition rank at most 1 and construct from a suitable system of 1-decomposable cpc-approximations an AF-algebra E together with an embedding of A into E and a conditional expectation of E onto A without assuming the UCT. We also consider some extensions of this inclusion and indicate some applications.

Last updated on 11 Feb 2026, 10:36am. Please contact us with feedback and comments about this page.